Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice

Research output: Contribution to journalJournal articleResearchpeer-review

Sexual dimorphism is evident in brain structure, size, and function throughout multiple species. Here, we tested whether cerebrospinal fluid entry into the glymphatic system, a network of perivascular fluid transport that clears metabolic waste from the brain, was altered between male and female mice. We analyze glymphatic influx in 244 young reproductive age (2–4 months) C57BL/6 mice. We found no male/female differences in total influx under anesthesia, or across the anterior/posterior axis of the brain. Circadian-dependent changes in glymphatic influx under ketamine/xylazine anesthesia were not altered by sex. This was not true for diurnal rhythms under pentobarbital and avertin, but both still showed daily oscillations independent of biological sex. Finally, although glymphatic influx decreases with age there was no sex difference in total influx or subregion-dependent tracer distribution in 17 middle aged (9–10 months) and 36 old (22–24 months) mice. Overall, in healthy adult C57BL/6 mice we could not detect male/female differences in glymphatic influx. This finding contrasts the gender differences in common neurodegenerative diseases. We propose that additional sex-dependent co-morbidities, such as chronic stress, protein misfolding, traumatic brain injury or other pathological mechanisms may explain the increased risk for developing proteinopathies rather than pre-existing suppression of glymphatic influx.

Original languageEnglish
Article number16073
JournalScientific Reports
Volume10
Issue number1
Number of pages8
ISSN2045-2322
DOIs
Publication statusPublished - 2020

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 250475972